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A L I N E A R  P R O B L E M  OF T H E  M O T I O N  OF A V O R T I C I T Y  S O U R C E  

AT T H E  I N T E R F A C E  B E T W E E N  T W O  M E D I A  

S. I. Gorlov UDC 532.59 

The problem of the motion of a vorticity source at the interface between two media is a classical 
problem of hydrodynamics. The first fundamental results were obtained by N. E. Kochin. In [1], he solved the 
problem of the motion of a vorticity source under the free surface of a heavy liquid and derived formulas for 
the buoyancy force, the wave resistance, and the shape of the free surface. In [2], he applied the results of [1] 
to the case of an interface between two media [2]. 

In this field of research, some problems are still not clear, in particular, the problem of the motion of 
a vorticity source above the interface of media, in a lower-density medium. In addition, there are only few 
data on the calculation of hydrodynamic reactions that affect the vorticity source. This paper is devoted to 
solution of these problems. For the problem of the motion of a vorticity source under and above the interface 
of two media, we derive formulas for the complex velocities, the hydrodynamic reactions, and for the shape 
of the media interface. A highly effective method for calculating the wave integrals is developed. Based on 
the algorithm proposed for solution of this problem, we performed a numerical experiment to evaluate the 
influence of the interface of media on the hydrodynamic characteristics of the vorticity source. The asymptotic 
behavior of the problem solution has also been studied in the far field behind the vorticity source. 

1. Let the vorticity source with intensity C = F + i Q move at a constant velocity near the interface 
between two media. We assume that the liquid is ideal, incompressible, heavy, and homogeneous in the layers 
D1 and D2. We introduce an inertial coordinate system (related to the vorticity source) by arranging the 
O x  axis along the undisturbed interface. The problem will be considered in the plane of a complex variable 
z = x + i y .  In this case, g is the acceleration of gravity, Pk is the liquid density in the kth layer, and Vkoo 
is the velocity of the liquid at infinity in front of the vorticity source in the layer Dk (k = 1 and 2). Let the 
vorticity source be located at the point zo = xo - i h  of the layer D1 (motion below the interface of the media. 
Fig. la). For the motion above the interface, the vorticity source is located at the point zo = xo + ih  in the 
layer D2 (Fig. lb). 

We introduce the complex velocities V t ( z )  to describe the disturbed motion of the liquid in the Dk 
layer (k = 1 and 2). The functions V k ( z )  must be analytical in the Dk region, except for the point z0 for 
k = 1 (motion under the interface) and k = 2 (motion above the interface), and be subject to the following 
boundary conditions: the continuity of the normal velocity component and of the pressure in going through 
the interface between the D1 and D2 regions and the decay of the disturbed velocities at infinity in front of 
the vorticity source. 

A solution of the problem of the motion under the interface between the media, which was obtained 
using the general method given in [3], has the form 
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p,v,~ p2v~ . g(p, - p : )  
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Using the method of [4], we derive the following formulas for the wave resistance R~ and the buoyancy 
force Ru of the vorticity source: 

Rx = -plQVloo + ARz ,  A R z  = p l v l r n ~ 2 ( r  2 + Q2)e-2Vxh; (1.3) 

~ e-2Ah 2 1 D1 ([,2 Ry = -plFVloo + ARy, ARy  = - (F 2 + Q )m12v 1 ~ - ~  dA - 4 - -~ ' -  + Q2)mt2" (1.4) 
0 

In this case, ARz and AR~ are the supplementary forces for the generalized Joukowski force which acts on 
the vorticity source. 

The shape of the interface is determined by the function 

f ( x )  = ulVIocRe ml2Vl(z). - rn122V2(z) for z = x. (1.5) 

Using the general method proposed in [3], we solve similarly the problem of the motion of a vorticity 
source above the interface: 
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R= = -p2QV2oo + AR=, AR,: = p2ulm22(F 2 + Q2)e-2"lh; (1.8) 

e-2Ah p2. (F2 
R ,  = - p ,  rv, oo + An,, AR, = ~( r  2 + Q2)m~2~, J ~ :7 ,  ax - 47rh + O2)m12. (1.9) 
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The interface between two media also obeys formula (1.5). 
2. It is interesting to consider the asymptotic behavior of the solution of the problem that we study 

herein under (1.1) and (1.2) and above (1.6) and (1.7) the interface together with the asymptotics of relation 
(1.5) for the shape of the interface in the far field behind the vorticity source. 

Applying the asymptotic estimates of [5] for the integro-exponential function to the integrals in relations 
(1.1) and (1.2) with Re z >> Iz01, we have 

(?) Vs(z) = -2-CulmI2ie -wl(z--i~ + 0 , V2(z) = V1----~ 

Substituting these asymptotic relations for the complex velocities into (1.5), we obtain the following asymptotic 
relation for the interface between the media in the far field: 

{ F Qul(XXo)} f(x) = 2m~2 e-v~h V---~sinul(x - x0) + V---~cos - �9 
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Clearly, the wave amplitudes for the vortex Ar and the source AQ in the far field obey the relations below 

ar  = 2ml2e-"lh(lFI/Vl~), AQ = 2ml2e-"lh(lQl/Vloo), (2.1) 

and the wavelength is A = 27r/v1. 
Note that the resulting asymptotic behavior of the solution of the problem of the motion of a vorticity 

source under the interface is completely consistent with the results of [2]. 
Similarly, the asymptotic behavior of expressions (1.5)-(1.7) for the problem of the motion of a vorticity 

source above the interface is determined: 

sm Vl(X - xo) + - -  cos 
2r162 V2r162 

Ar = 2m22e-"lh(Irl/V2~),  a q  = 2m~2e-~'h(IQI/V2=), ,~ = 2~/~1. 

3. To determine the complex velocities (1.1), (1.2) and (1.6), (1.7), it is necessary to calculate integrals 
of the following form 

} e i)~z ~ e -i)'z 
I i =  ~dAA_A0 ( I m z > 0 ) ,  1 2 = j ~ _ A 0 d A  ( I m z < 0 ) .  

0 0 

The main challenge is the fact that there is the oscillating integrand in the above relations. Having substituted 
the variable u = -iz(A - A0) ( Imz > 0) and u = iz(a - ~ 0 )  ( Imz < 0), we can change over to the 
integro-exponential function of a complex argument I1 = eiX~ -sign(Rez)rie iaoz (Imz > 0), [2 = 
e-iXo~Ex(-iAoz) - sign(Re z)Trie -ixoz (Im z < 0). The second term on the right-hand side of these expressions 
appears owing to the singularity of the integrand at the point A = A0. 

A highly accurate algorithm was obtained to calculate the integro-exponential function of a complex 
argument E~(~). We used the Laguerre quadrature formulas [6] for I~t ~ 1 and the method of rational 
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approximations [7, 81 for > 1. 
4. A highly accurate algorithm of solving the problem was designed on the basis of (1.1)-(1.9), (2.1). 

and (2.2). For the problem of the motion of a vorticity source under the interface, we have performed 
comprehensive numerical experiment on the calculation of the coefficients of additional wave resistance 
ACx = ARzh/(px(F2+Q2)), additional buoyancy force ACy = ARyh/(pl(F2+O2)), and of the interface shape 
in the near and far fields behind the vortex. The solution of the problem depends on the following dimensionless 
parameters: Fr = Vlzc/v/~ is the Froude number, p, = p2/pl is the density ratio, v, = V2~/VIcr is the ratio 
of the velocities of incoming flows, and F0 = F/(V]~h) is the dimensionless vortex intensity. In calculations. 
we set x 0 = 0 .  

Figure 2 shows the coefficients ACz and ACy versus the Froude number for p, = 0, 0.2, 0.4, 0.6, and 
0.8 (curves 1-5) with v, = 1. The following effect was observed: as p, increases, the maxima of the wave 
resistance and of the buoyancy force decrease and shift toward the smaller Fr values. 

In studying the wave problems, it is of interest to calculate the shape of the interface f(x)/(hFo). 
Such calculations were performed for Fr = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, and 1.2 (curves 1-8 in Fig. 3) 
with p, = 0.00125 and 0.97 (the interfaces between the water and air media and between the saltwater and 
freshwater, respectively) and v, = 1. The wavelength increases with increasing Froude number and density 
ratio. 

The shape of the interface between two media f(z)/(hFo) has also been considered for the problem of 
the motion of a vorticity source in a less denser liquid with Fr = V2~/v"~ = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. 1.1. 
and 1.2 (curves 1-8 in Fig. 4) for p, = 0.00125 and 0.97 and v, = 1. One should pay attention to the smaller 
amplitude of the wave that  is generated by the vortex moving above the interface between the water and air 
media compared with the amplitude of the wave generated by the vortex moving in a denser liquid. 

Figure 5 shows curves of the coefficients of additional wave resistance AC~ = A R~ hi(P2 (F 2 + Q2)) and 
of buoyancy force ACy = ARyh/(p2(F 2 + Q2)) versus the Froude number for p, = 0, 0.2, 0.4, 0.6, and 0.8 
(curves 1-5) at v, = 1. The behavior of the coefficient ACx is the same as for the motion under the interface. 
As for the coefficient ACy, its minimum decreases and shifts toward the smaller Fr values with increasing p,. 
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Thus, the following conclusion can be drawn: the internal waves which are generated by a vorticity 
source immersed in a liquid have a substantial effect on the hydrodynamic characteristics of this vorticity 
source. 
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